Skip to main content

Mudando Média Pergunta Exemplo


Média móvel Este exemplo ensina como calcular a média móvel de uma série temporal no Excel. Uma média móvel é usada para suavizar irregularidades (picos e vales) para reconhecer facilmente as tendências. 1. Primeiro, vamos dar uma olhada em nossas séries temporais. 2. Na guia Dados, clique em Análise de dados. Nota: não consigo encontrar o botão Análise de dados Clique aqui para carregar o complemento Analysis ToolPak. 3. Selecione Média móvel e clique em OK. 4. Clique na caixa Intervalo de entrada e selecione o intervalo B2: M2. 5. Clique na caixa Intervalo e digite 6. 6. Clique na caixa Escala de saída e selecione a célula B3. 8. Traçar um gráfico desses valores. Explicação: porque definimos o intervalo para 6, a média móvel é a média dos 5 pontos de dados anteriores e o ponto de dados atual. Como resultado, picos e vales são alisados. O gráfico mostra uma tendência crescente. O Excel não pode calcular a média móvel para os primeiros 5 pontos de dados porque não há suficientes pontos de dados anteriores. 9. Repita os passos 2 a 8 para o intervalo 2 e o intervalo 4. Conclusão: quanto maior o intervalo, mais os picos e os vales são alisados. Quanto menor o intervalo, mais próximas as médias móveis são para os pontos de dados reais. Notas-OR são uma série de notas introdutórias sobre tópicos que se enquadram no título abrangente do campo de pesquisa operacional (OR). Eles foram usados ​​originalmente por mim em um curso OR introdutório que eu dou no Imperial College. Eles estão agora disponíveis para uso por qualquer estudante e professor interessado em OU, sujeito às seguintes condições. Uma lista completa dos tópicos disponíveis no OR-Notes pode ser encontrada aqui. Exemplos de previsão Exemplo de previsão 1996 exame UG A demanda por um produto em cada um dos últimos cinco meses é mostrada abaixo. Use uma média móvel de dois meses para gerar uma previsão de demanda no mês 6. Aplique suavização exponencial com uma constante de suavização de 0,9 para gerar uma previsão de demanda por demanda no mês 6. Qual dessas duas previsões você prefere e por que o movimento de dois meses A média dos meses de dois a cinco é dada por: A previsão para o mês seis é apenas a média móvel do mês anterior, ou seja, a média móvel para o mês 5 m 5 2350. Aplicando suavização exponencial com uma constante de suavização de 0,9, obtemos: como antes A previsão para o mês seis é apenas a média para o mês 5 M 5 2386 Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, encontramos isso para a média móvel de MSD (15 - 19) sup2 (18 - 23) sup2 (21 - 24) sup23 16.67 e para a média exponencialmente suavizada com uma constante de suavização de 0,9 MSD (13 - 17) sup2 (16,60 - 19) sup2 (18,76 - 23) sup2 (22,58 - 24) sup24 10,44 Em geral, verificamos que o alisamento exponencial parece dar as melhores previsões de um mês antes, pois tem um MSD mais baixo. Por isso, preferimos a previsão de 2386 que foi produzida por suavização exponencial. Exemplo de previsão Exercício de 1994 UG A tabela abaixo mostra a demanda por um novo pós-afluxo em uma loja para cada um dos últimos 7 meses. Calcule uma média móvel de dois meses para os meses dois a sete. Qual seria a sua previsão para a demanda no mês oito Aplicar o alisamento exponencial com uma constante de suavização de 0,1 para obter uma previsão da demanda no mês oito. Quais das duas previsões para o mês oito você prefere e por que o dono da loja acredita que os clientes estão mudando para este novo aftershave de outras marcas. Discuta como você pode modelar esse comportamento de comutação e indicar os dados que você precisaria para confirmar se essa mudança está ocorrendo ou não. A média móvel de dois meses para os meses dois a sete é dada por: A previsão para o mês oito é apenas a média móvel do mês anterior, ou seja, a média móvel para o mês 7 m 7 46. Aplicando alisamento exponencial com uma constante de suavização de 0,1 nós Obter: como antes, a previsão para o mês oito é apenas a média do mês 7 M 7 31.11 31 (como não podemos ter demanda fracionada). Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, encontramos isso para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,1. Em geral, vemos que a média móvel de dois meses parece dar as melhores previsões de um mês antes, pois tem um MSD mais baixo. Portanto, preferimos a previsão de 46 que foi produzida pela média móvel de dois meses. Para examinar a mudança, precisamos usar um modelo de processo Markov, onde as marcas dos estados e nós precisamos de informações de estado inicial e probabilidades de troca de clientes (de pesquisas). Nós precisamos executar o modelo em dados históricos para ver se temos um ajuste entre o modelo eo comportamento histórico. Exemplo de previsão 1992 exame UG A tabela abaixo mostra a demanda por uma determinada marca de navalha em uma loja para cada um dos últimos nove meses. Calcule uma média móvel de três meses nos meses três a nove. Qual seria a sua previsão para a demanda no mês dez Aplicar o alisamento exponencial com uma constante de suavização de 0,3 para obter uma previsão da demanda no mês dez. Qual das duas previsões para o mês dez você prefere e por que a média móvel de três meses para os meses 3 a 9 é dada por: A previsão para o mês 10 é apenas a média móvel do mês anterior, ou seja, a média móvel do mês 9 m 9 20.33. Por isso (como não podemos ter demanda fracionada), a previsão para o mês 10 é de 20. Aplicando suavização exponencial com uma constante de suavização de 0,3, obtemos: como antes, a previsão para o mês 10 é apenas a média para o mês 9 M 9 18,57 19 (como nós Não pode ter demanda fracionada). Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, encontramos isso para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,3. Em geral, verificamos que a média móvel de três meses parece dar as melhores previsões de um mês antes, pois tem um MSD mais baixo. Portanto, preferimos a previsão de 20 que foi produzida pela média móvel de três meses. Exemplo de previsão exame 1991 UG A tabela abaixo mostra a demanda por uma determinada marca de máquina de fax em uma loja de departamento em cada um dos últimos doze meses. Calcule a média móvel de quatro meses para os meses 4 a 12. Qual seria a sua previsão para a demanda no mês 13 Aplicar o alisamento exponencial com uma constante de suavização de 0,2 para obter uma previsão da demanda no mês 13. Qual das duas previsões para o mês 13 você prefere e por que outros fatores, não considerados nos cálculos acima, podem influenciar a demanda pelo aparelho de fax no mês 13. A média móvel de quatro meses para os meses 4 a 12 é dada por: m 4 (23 19 15 12) 4 17,25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19) 4 24,75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30,5 m 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35.75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46,25 A previsão para o mês 13 é apenas a média móvel do mês anterior, ou seja, a média móvel Para o mês 12 m 12 46,25. Por isso (como não podemos ter demanda fracionada), a previsão para o mês 13 é 46. Aplicando suavização exponencial com uma constante de suavização de 0,2 nós obtemos: Como antes, a previsão para o mês 13 é apenas a média para o mês 12 M 12 38.618 39 (como nós Não pode ter demanda fracionada). Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, encontramos isso para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,2. No geral, verificamos que a média móvel de quatro meses parece dar as melhores previsões de um mês antes, pois tem um MSD mais baixo. Por isso, preferimos a previsão de 46 que foi produzida pela média móvel de quatro meses. Demonstração sazonal da demanda, mudanças de preços, tanto esta marca como outras marcas, situação econômica geral, nova tecnologia. Exemplo de previsão, exame 1989 UG. A tabela abaixo mostra a demanda por uma determinada marca de forno de microondas em uma loja de departamento em cada um dos últimos doze meses. Calcule uma média móvel de seis meses para cada mês. Qual seria a sua previsão para a demanda no mês 13 Aplicar o alisamento exponencial com uma constante de suavização de 0,7 para obter uma previsão da demanda no mês 13. Qual das duas previsões para o mês 13 você prefere e por que agora não podemos calcular um seis Média móvel do mês até que tenhamos pelo menos 6 observações - ou seja, só podemos calcular essa média a partir do mês 6 em diante. Por isso, temos: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32,00 m 8 (35 36 34 32 30 29) 6 32,67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38,17 A previsão para o mês 13 é apenas a média móvel para o Mês antes, ou seja, a média móvel para o mês 12 m 12 38,17. Por isso (como não podemos ter demanda fracionada), a previsão para o mês 13 é de 38. Aplicando alisamento exponencial com uma constante de suavização de 0,7, obtemos: estou realmente tentando, mas esforçando-me, entender como o Autoregressive and Moving Average funciona. Eu sou muito terrível com a álgebra e ver isso realmente não melhora minha compreensão de algo. O que eu realmente adoraria é um exemplo extremamente simples de dizer 10 observações dependentes do tempo para que eu possa ver como eles funcionam. Então, digamos que você tem os seguintes pontos de dados do preço do ouro: Por exemplo, no período de tempo 10, qual seria a média móvel de Lag 2, MA (2), ou MA (1) e AR (1) ou AR (2) Eu aprendi tradicionalmente sobre a média móvel sendo algo como: Mas ao olhar para os modelos ARMA, o MA é explicado como uma função de termos de erro anteriores, que eu não consigo entender. É apenas uma maneira mais elegante de calcular o mesmo que achei este post útil: (Como entender o SARIMAX intuitivamente), mas, se a álgebra ajudar, não consigo ver algo de forma muito clara até ver um exemplo simplificado. Dado os dados do preço do ouro, você primeiro estimar o modelo e depois ver como ele funciona (previsões de análise de impulso-resposta). Talvez você deva reduzir a sua pergunta apenas na segunda parte (e deixar a estimação de lado). Ou seja, você forneceria um AR (1) ou MA (1) ou qualquer modelo (por exemplo, xt0.5 x varepsilont) e pergunte-nos, como esse modelo em particular funciona. Ndash Richard Hardy 13 de agosto 15 às 19:58 Para qualquer modelo AR (q), a maneira fácil de estimar o (s) parâmetro (es) é usar OLS - e executar a regressão de: pricet beta0 beta1 cdot price dotso betaq cdot price Vamos fazê-lo (Em R): (Ok, então tratei um pouco e usei a função arima em R, mas produz as mesmas estimativas que a regressão OLS - experimente). Agora vamos dar uma olhada no modelo MA (1). Agora, o modelo MA é muito diferente do modelo AR. O MA é a média ponderada do erro de períodos passados, onde, como o modelo AR usa os valores de dados reais dos períodos anteriores. O MA (1) é: pricet mu wt theta1 cdot w Onde mu é a média, e wt são os termos de erro - não o valor previo de preço (como no modelo AR). Agora, infelizmente, não podemos estimar os parâmetros por algo tão simples quanto o OLS. Não abordarei o método aqui, mas a função R arima usa a máxima semelhança. Vamos tentar: espere que isso ajude. (2) Em relação à pergunta MA (1). Você diz que o residual é 1.0023 para o segundo período. Isso faz sentido. Minha compreensão do residual é a diferença entre o valor previsto e o valor observado. Mas você então diz o valor previsto para o período 2, é calculado usando o residual para o período 2. Isso é certo. Não é o valor previsto para o período 2 apenas (0.54230 4.9977) ndash Will T-E 17 de agosto 15 às 11:24

Comments